Poly(DL-lactide-co-glycolic acid) nanoparticle design and payload prediction: a molecular descriptor based study.

نویسندگان

  • Suvadra Das
  • Partha Roy
  • Ataul Islam
  • Achintya Saha
  • Arup Mukherjee
چکیده

Polymer nanoparticles are veritable tools for pharmacokinetic and therapeutic modifications of bioactive compounds. Nanoparticle technology development and scaling up are however often constrained due to poor payload and improper particle dissolution. This work was aimed to develop descriptor based computational models as prior art tools for optimal payload in polymeric nanoparticles. Loading optimization experiments were carried out both in vitro and in-silico. Molecular descriptors generated in three different platforms DRAGON, molecular operating environment (MOE) and VolSurf+ were used. Multiple linear regression analysis (MLR) provided computation models which were further validated based on goodness of fit statistics and correlation coefficients (DRAGON, R(2)=0.889, Q(2)=0.657, R(2)(pred)=0.616; MOE, R(2)=0.826, Q(2)=0.572, R(2)(pred)=0.601; and VolSurf+, R(2)=0.818, Q(2)=0.573, R(2)(pred)=0.653). Pharmacophore space modeling studies were carried out in order to understand the fundamental molecular interactions necessary for drug loading in poly(DL-lactide-co-glycolic acid). The space modeling study (R(2)=0.882, Q(2)=0.662, R(2)(pred)=0.725, Δ(cost)=108.931) indicated that hydrogen bond acceptors and ring aromatic features are of primary significance for nanoparticle drug loading. Results of in vitro experiments have also confirmed the fact as a viable prognosis in case of nanoparticle payload. Polymeric nanoparticles payload prediction can therefore be a useful tool for wider benefits at the preformulation stages itself.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anticancer Activity of Nanoparticles Based on PLGA and its Co-polymer: In-vitro Evaluation

Attempts have been made to prepare nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) and doxorubicin. Biological evaluation and physio-chemical characterizations were performed to elucidate the effects of initial drug loading and polymer composition on nanoparticle properties and its antitumor activity. PLGA nanoparticles were formulated by sonication method. Lactide/glycolide ratio ...

متن کامل

Anticancer Activity of Nanoparticles Based on PLGA and its Co-polymer: In-vitro Evaluation

Attempts have been made to prepare nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) and doxorubicin. Biological evaluation and physio-chemical characterizations were performed to elucidate the effects of initial drug loading and polymer composition on nanoparticle properties and its antitumor activity. PLGA nanoparticles were formulated by sonication method. Lactide/glycolide ratio ...

متن کامل

Self-assembled hybrid nanoparticles for targeted co-delivery of two drugs into cancer cells.

A therapeutic aptamer-lipid-poly(lactide-co-glycolic acid) hybrid nanoparticle-based drug delivery system was prepared and characterized. This system can co-deliver two different drugs with distinct solubility and different anticancer mechanisms to target cancer cells with high specificity and efficiency.

متن کامل

Poly (Lactic Acid)Nanofibres as Drug Delivery Systems: Opportunities and Challenges

Numerous Scientists have discovered the procedure of nanotechnology, explicitlynanofibers, asdrug delivery systems for transdermal uses. Nanofibers canbe used to deliver drugs and are capable of controlled release for a continued periodof time. Poly (Lactic Acid) (PLA) is the lastly interesting employed synthetic polymer in biomedical application owing to its well categorized biodegradable prop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical & pharmaceutical bulletin

دوره 61 2  شماره 

صفحات  -

تاریخ انتشار 2013